Forest Fire (Wildfire)


1. Introduction

A wildfire or wildland fire is a fire in an area of combustible vegetation occurring in rural areas. Depending on the type of vegetation present, a wildfire can also be classified more specifically as a brush fire, bushfire, desert fire, forest fire, grass fire, hill fire, peat fire, vegetation fire, and veld fire.

Wildfires can be characterized in terms of the cause of ignition, their physical properties, the combustible material present, and the effect of weather on the fire. Wildfires can cause damage to property and human life, though naturally occurring wildfires may have beneficial effects on native vegetation, animals, and ecosystems that have evolved with fire. High-severity wildfire creates complex early seral forest habitat (also called "snag forest habitat"), which often has higher species richness and diversity than unburned old forest. Many plant species depend on the effects of fire for growth and reproduction. Wildfires in ecosystems where wildfire is uncommon or where non-native vegetation has encroached may have strongly negative ecological effects. Wildfire behavior and severity result from the combination of factors such as available fuels, physical setting, and weather. Analyses of historical meteorological data and national fire records in western North America show the primacy of climate in driving large regional fires via wet periods that create substantial fuels or drought and warming that extend conducive fire weather.

Strategies for wildfire prevention, detection, and suppression have varied over the years. One common and inexpensive technique is controlled burning, intentionally igniting smaller fires to minimize the amount of flammable material available for a potential wildfire. Vegetation may be burned periodically to maintain high species diversity and limit the accumulation of plants and other debris that may serve as fuel. Wildland fire use is the cheapest and most ecologically appropriate policy for many forests. Fuels may also be removed by logging, but fuels treatments and thinning have no effect on severe fire behavior when under extreme weather conditions. Wildfire itself is reportedly "the most effective treatment for reducing a fire's rate of spread, fireline intensity, flame length, and heat per unit of area" according to Jan Van Wagtendonk, a biologist at the Yellowstone Field Station. Building codes in fire-prone areas typically require that structures be built of flame-resistant materials and a defensible space be maintained by clearing flammable materials within a prescribed distance from the structure.

2. Causes

Three major natural causes of wildfire ignitions exist:

- dry climate - lightning - volcanic eruption

The most common direct human causes of wildfire ignition include arson, discarded cigarettes, power-lines arcs (as detected by arc mapping), and sparks from equipment. Ignition of wildland fires via contact with hot rifle-bullet fragments is also possible under the right conditions. Wildfires can also be started in communities experiencing shifting cultivation, where land is cleared quickly and farmed until the soil loses fertility, and slash and burn clearing. Forested areas cleared by logging encourage the dominance of flammable grasses, and abandoned logging roads overgrown by vegetation may act as fire corridors. Annual grassland fires in southern Vietnam stem in part from the destruction of forested areas by US military herbicides, explosives, and mechanical land-clearing and -burning operations during the Vietnam War.

The most common cause of wildfires varies throughout the world. In Canada and northwest China, lightning operates as the major source of ignition. In other parts of the world, human involvement is a major contributor. In Africa, Central America, Fiji, Mexico, New Zealand, South America, and Southeast Asia, wildfires can be attributed to human activities such as agriculture, animal husbandry, and land-conversion burning. In China and in the Mediterranean Basin, human carelessness is a major cause of wildfires. In the United States and Australia, the source of wildfires can be traced both to lightning strikes and to human activities (such as machinery sparks, cast-away cigarette butts, or arson). Coal seam fires burn in the thousands around the world, such as those in Burning Mountain, New South Wales; Centralia, Pennsylvania; and several coal-sustained fires in China. They can also flare up unexpectedly and ignite nearby flammable material.

3. Spread

The spread of wildfires varies based on the flammable material present, its vertical arrangement and moisture content, and weather conditions. Fuel arrangement and density is governed in part by topography, as land shape determines factors such as available sunlight and water for plant growth. Overall, fire types can be generally characterized by their fuels as follows:

Ground fires are fed by subterranean roots, duff and other buried organic matter. This fuel type is especially susceptible to ignition due to spotting. Ground fires typically burn by smoldering, and can burn slowly for days to months, such as peat fires in Kalimantan and Eastern Sumatra, Indonesia, which resulted from a riceland creation project that unintentionally drained and dried the peat. Crawling or surface fires are fueled by low-lying vegetation on the forest floor such as leaf and timber litter, debris, grass, and low-lying shrubbery. This kind of fire often burns at a relatively lower temperature than crown fires (less than 400 °C (752 °F)) and may spread at slow rate, though steep slopes and wind can accelerate the rate of spread. Ladder fires consume material between low-level vegetation and tree canopies, such as small trees, downed logs, and vines. Kudzu, Old World climbing fern, and other invasive plants that scale trees may also encourage ladder fires. Crown, canopy, or aerial fires burn suspended material at the canopy level, such as tall trees, vines, and mosses. The ignition of a crown fire, termed crowning, is dependent on the density of the suspended material, canopy height, canopy continuity, sufficient surface and ladder fires, vegetation moisture content, and weather conditions during the blaze. Stand-replacing fires lit by humans can spread into the Amazon rain forest, damaging ecosystems not particularly suited for heat or arid conditions.

4. Prevention

Wildfire prevention refers to the preemptive methods aimed at reducing the risk of fires as well as lessening its severity and spread. Prevention techniques aim to manage air quality, maintain ecological balances, protect resources, and to affect future fires. North American firefighting policies permit naturally caused fires to burn to maintain their ecological role, so long as the risks of escape into high-value areas are mitigated. However, prevention policies must consider the role that humans play in wildfires, since, for example, 95% of forest fires in Europe are related to human involvement. Sources of human-caused fire may include arson, accidental ignition, or the uncontrolled use of fire in land-clearing and agriculture such as the slash-and-burn farming in Southeast Asia.

Vegetation may be burned periodically to maintain high species diversity and frequent burning of surface fuels limits fuel accumulation. Wildland fire use is the cheapest and most ecologically appropriate policy for many forests. Fuels may also be removed by logging, but fuels treatments and thinning have no effect on severe fire behavior Wildfire models are often used to predict and compare the benefits of different fuel treatments on future wildfire spread, but their accuracy is low.

Wildfire itself is reportedly "the most effective treatment for reducing a fire's rate of spread, fireline intensity, flame length, and heat per unit of area" according to Jan van Wagtendonk, a biologist at the Yellowstone Field Station.

Building codes in fire-prone areas typically require that structures be built of flame-resistant materials and a defensible space be maintained by clearing flammable materials within a prescribed distance from the structure. Communities in the Philippines also maintain fire lines 5 to 10 meters (16 to 33 ft) wide between the forest and their village, and patrol these lines during summer months or seasons of dry weather. Continued residential development in fire-prone areas and rebuilding structures destroyed by fires has been met with criticism. The ecological benefits of fire are often overridden by the economic and safety benefits of protecting structures and human life.


5. Detection

Fast and effective detection is a key factor in wildfire fighting. Early detection efforts were focused on early response, accurate results in both daytime and nighttime, and the ability to prioritize fire danger. Fire lookout towers were used in the United States in the early 20th century and fires were reported using telephones, carrier pigeons, and heliographs. Aerial and land photography using instant cameras were used in the 1950s until infrared scanning was developed for fire detection in the 1960s. However, information analysis and delivery was often delayed by limitations in communication technology. Early satellite-derived fire analyses were hand-drawn on maps at a remote site and sent via overnight mail to the fire manager. During the Yellowstone fires of 1988, a data station was established in West Yellowstone, permitting the delivery of satellite-based fire information in approximately four hours.

Currently, public hotlines, fire lookouts in towers, and ground and aerial patrols can be used as a means of early detection of forest fires. However, accurate human observation may be limited by operator fatigue, time of day, time of year, and geographic location. Electronic systems have gained popularity in recent years as a possible resolution to human operator error. A government report on a recent trial of three automated camera fire detection systems in Australia did, however, conclude "...detection by the camera systems was slower and less reliable than by a trained human observer". These systems may be semi- or fully automated and employ systems based on the risk area and degree of human presence, as suggested by GIS data analyses. An integrated approach of multiple systems can be used to merge satellite data, aerial imagery, and personnel position via Global Positioning System (GPS) into a collective whole for near-realtime use by wireless Incident Command Centers.

A small, high risk area that features thick vegetation, a strong human presence, or is close to a critical urban area can be monitored using a local sensor network. Detection systems may include wireless sensor networks that act as automated weather systems: detecting temperature, humidity, and smoke. These may be battery-powered, solar-powered, or tree-rechargeable: able to recharge their battery systems using the small electrical currents in plant material. Larger, medium-risk areas can be monitored by scanning towers that incorporate fixed cameras and sensors to detect smoke or additional factors such as the infrared signature of carbon dioxide produced by fires. Additional capabilities such as night vision, brightness detection, and color change detection may also be incorporated into sensor arrays.

Satellite and aerial monitoring through the use of planes, helicopter, or UAVs can provide a wider view and may be sufficient to monitor very large, low risk areas. These more sophisticated systems employ GPS and aircraft-mounted infrared or high-resolution visible cameras to identify and target wildfires. Satellite-mounted sensors such as Envisat's Advanced Along Track Scanning Radiometer and European Remote-Sensing Satellite's Along-Track Scanning Radiometer can measure infrared radiation emitted by fires, identifying hot spots greater than 39 °C (102 °F). The National Oceanic and Atmospheric Administration's Hazard Mapping System combines remote-sensing data from satellite sources such as Geostationary Operational Environmental Satellite (GOES), Moderate-Resolution Imaging Spectroradiometer (MODIS), and Advanced Very High Resolution Radiometer (AVHRR) for detection of fire and smoke plume locations. However, satellite detection is prone to offset errors, anywhere from 2 to 3 kilometers (1 to 2 mi) for MODIS and AVHRR data and up to 12 kilometers (7.5 mi) for GOES data. Satellites in geostationary orbits may become disabled, and satellites in polar orbits are often limited by their short window of observation time. Cloud cover and image resolution and may also limit the effectiveness of satellite imagery.

in 2015 a new fire detection tool is in operation at the U.S. Department of Agriculture (USDA) Forest Service (USFS) which uses data from the Suomi National Polar-orbiting Partnership (NPP) satellite to detect smaller fires in more detail than previous space-based products. The high-resolution data is used with a computer model to predict how a fire will change direction based on weather and land conditions. The active fire detection product using data from Suomi NPP's Visible Infrared Imaging Radiometer Suite (VIIRS) increases the resolution of fire observations to 1,230 feet (375 meters). Previous NASA satellite data products available since the early 2000s observed fires at 3,280 foot (1 kilometer) resolution. The data is one of the intelligence tools used by the USFS and Department of Interior agencies across the United States to guide resource allocation and strategic fire management decisions. The enhanced VIIRS fire product enables detection every 12 hours or less of much smaller fires and provides more detail and consistent tracking of fire lines during long duration wildfires – capabilities critical for early warning systems and support of routine mapping of fire progression. Active fire locations are available to users within minutes from the satellite overpass through data processing facilities at the USFS Remote Sensing Applications Center, which uses technologies developed by the NASA Goddard Space Flight Center Direct Readout Laboratory in Greenbelt, Maryland. The model uses data on weather conditions and the land surrounding an active fire to predict 12–18 hours in advance whether a blaze will shift direction. The state of Colorado decided to incorporate the weather-fire model in its firefighting efforts beginning with the 2016 fire season.

In 2014, an international campaign was organized in South Africa's Kruger National Park to validate fire detection products including the new VIIRS active fire data. In advance of that campaign, the Meraka Institute of the Council for Scientific and Industrial Research in Pretoria, South Africa, an early adopter of the VIIRS 375m fire product, put it to use during several large wildfires in Kruger.

The demand for timely, high-quality fire information has increased in recent years. Wildfires in the United States burn an average of 7 million acres of land each year. For the last 10 years, the USFS and Department of Interior have spent a combined average of about $2–4 billion annually on wildfire suppression.


6. Modeling

Wildfire modeling is concerned with numerical simulation of wildfires in order to comprehend and predict fire behavior. Wildfire modeling aims to aid wildfire suppression, increase the safety of firefighters and the public, and minimize damage. Using computational science, wildfire modeling involves the statistical analysis of past fire events to predict spotting risks and front behavior. Various wildfire propagation models have been proposed in the past, including simple ellipses and egg- and fan-shaped models. Early attempts to determine wildfire behavior assumed terrain and vegetation uniformity. However, the exact behavior of a wildfire's front is dependent on a variety of factors, including windspeed and slope steepness. Modern growth models utilize a combination of past ellipsoidal descriptions and Huygens' Principle to simulate fire growth as a continuously expanding polygon. Extreme value theory may also be used to predict the size of large wildfires. However, large fires that exceed suppression capabilities are often regarded as statistical outliers in standard analyses, even though fire policies are more influenced by large wildfires than by small fires.